2.193   ODE No. 193

\[ -a x (\log (x)+1)+x \log (x) y'(x)+y(x)=0 \]

Mathematica : cpu = 0.0218968 (sec), leaf count = 16

DSolve[-(a*x*(1 + Log[x])) + y[x] + x*Log[x]*Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to a x+\frac {c_1}{\log (x)}\right \}\right \}\]

Maple : cpu = 0.009 (sec), leaf count = 14

dsolve(x*diff(y(x),x)*ln(x)+y(x)-a*x*(ln(x)+1) = 0,y(x))
 
\[y \left (x \right ) = a x +\frac {c_{1}}{\ln \left (x \right )}\]