2.189   ODE No. 189

\[ -a y(x)^n-b x^{(m+1) n}+x^{m (n-1)+n} y'(x)=0 \]

Mathematica : cpu = 1.0612 (sec), leaf count = 91

DSolve[-(b*x^((1 + m)*n)) - a*y[x]^n + x^(m*(-1 + n) + n)*Derivative[1][y][x] == 0,y[x],x]
 
\[\text {Solve}\left [\int _1^{\left (\frac {a x^{-((m+1) n)}}{b}\right )^{\frac {1}{n}} y(x)}\frac {1}{K[1]^n-\left (\frac {b^{1-n} (m+1)^n}{a}\right )^{\frac {1}{n}} K[1]+1}dK[1]=b x^{m+1} \log (x) \left (\frac {a x^{-((m+1) n)}}{b}\right )^{\frac {1}{n}}+c_1,y(x)\right ]\]

Maple : cpu = 1.093 (sec), leaf count = 60

dsolve(x^(m*(n-1)+n)*diff(y(x),x)-a*y(x)^n-b*x^(n*(m+1)) = 0,y(x))
 
\[\int _{\textit {\_b}}^{y \left (x \right )}-\frac {x^{m n} x^{n}}{x^{n} \left (x^{m} x b -\left (m +1\right ) \textit {\_a} \right ) x^{m n}+a \,x^{m} x \,\textit {\_a}^{n}}d \textit {\_a} +\ln \left (x \right )-c_{1} = 0\]