2.1879   ODE No. 1879

\[ \left \{t x'(t)+2 (x(t)-y(t))=t,x(t)+t y'(t)+5 y(t)=t^2\right \} \]

Mathematica : cpu = 0.0293161 (sec), leaf count = 58

DSolve[{2*(x[t] - y[t]) + t*Derivative[1][x][t] == t, x[t] + 5*y[t] + t*Derivative[1][y][t] == t^2},{x[t], y[t]},t]
 
\[\left \{\left \{x(t)\to \frac {c_1}{t^4}+\frac {c_2}{t^3}+\frac {1}{30} t (2 t+9),y(t)\to -\frac {c_1}{t^4}-\frac {c_2}{2 t^3}+\frac {1}{60} t (8 t-3)\right \}\right \}\]

Maple : cpu = 0.046 (sec), leaf count = 54

dsolve({t*diff(x(t),t)+2*x(t)-2*y(t) = t, t*diff(y(t),t)+x(t)+5*y(t) = t^2})
 
\[\left \{x \left (t \right ) = \frac {2 t^{6}+9 t^{5}+30 c_{2} t +30 c_{1}}{30 t^{4}}, y \left (t \right ) = \frac {8 t^{6}-3 t^{5}-30 c_{2} t -60 c_{1}}{60 t^{4}}\right \}\]