2.1857   ODE No. 1857

\[ \left \{x'(t)=a y(t),y'(t)=-a x(t)\right \} \]

Mathematica : cpu = 0.0135685 (sec), leaf count = 39

DSolve[{Derivative[1][x][t] == a*y[t], Derivative[1][y][t] == -(a*x[t])},{x[t], y[t]},t]
 
\[\{\{x(t)\to c_1 \cos (a t)+c_2 \sin (a t),y(t)\to c_2 \cos (a t)-c_1 \sin (a t)\}\}\]

Maple : cpu = 0.043 (sec), leaf count = 35

dsolve({diff(x(t),t) = a*y(t), diff(y(t),t) = -a*x(t)})
 
\[\{x \left (t \right ) = c_{1} \sin \left (t a \right )+c_{2} \cos \left (t a \right ), y \left (t \right ) = \cos \left (t a \right ) c_{1} -\sin \left (t a \right ) c_{2}\}\]