2.185   ODE No. 185

\[ x^7 y'(x)+5 x^3 y(x)^2+2 \left (x^2+1\right ) y(x)^3=0 \]

Mathematica : cpu = 0.308862 (sec), leaf count = 123

DSolve[5*x^3*y[x]^2 + 2*(1 + x^2)*y[x]^3 + x^7*Derivative[1][y][x] == 0,y[x],x]
 
\[\text {Solve}\left [c_1=\frac {\frac {1}{2} \sqrt [4]{1-\left (\frac {i x^2}{y(x)}+\frac {i}{x}\right )^2} \left (\frac {i x^2}{y(x)}+\frac {i}{x}\right ) \, _2F_1\left (\frac {1}{2},\frac {5}{4};\frac {3}{2};\left (\frac {i x^2}{y(x)}+\frac {i}{x}\right )^2\right )+i x}{\sqrt [4]{-1+\left (\frac {i x^2}{y(x)}+\frac {i}{x}\right )^2}},y(x)\right ]\]

Maple : cpu = 0.049 (sec), leaf count = 63

dsolve(x^7*diff(y(x),x)+2*(x^2+1)*y(x)^3+5*x^3*y(x)^2 = 0,y(x))
 
\[c_{1} +\frac {x}{{\left (\left (\frac {1}{x}+\frac {x^{2}}{y \left (x \right )}\right )^{2}+1\right )}^{{1}/{4}}}+\frac {\left (x^{3}+y \left (x \right )\right ) \operatorname {hypergeom}\left (\left [\frac {1}{2}, \frac {5}{4}\right ], \left [\frac {3}{2}\right ], -\frac {\left (x^{3}+y \left (x \right )\right )^{2}}{x^{2} y \left (x \right )^{2}}\right )}{2 x y \left (x \right )} = 0\]