2.1837 ODE No. 1837
\[ y^{(3)}(x)-a^2 \left (y'(x)^5+2 y'(x)^3+y'(x)\right )=0 \]
✓ Mathematica : cpu = 10.0977 (sec), leaf count = 145
DSolve[-(a^2*(Derivative[1][y][x] + 2*Derivative[1][y][x]^3 + Derivative[1][y][x]^5)) + Derivative[3][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \int _1^x\text {InverseFunction}\left [-3 \int \frac {1}{\sqrt {3 \left (a^2\right )^2 \text {$\#$1}^6+9 \left (a^2\right )^2 \text {$\#$1}^4+9 \left (a^2\right )^2 \text {$\#$1}^2+9 c_1}}d\text {$\#$1}\& \right ][c_2-K[1]]dK[1]+c_3\right \},\left \{y(x)\to \int _1^x\text {InverseFunction}\left [3 \int \frac {1}{\sqrt {3 \left (a^2\right )^2 \text {$\#$1}^6+9 \left (a^2\right )^2 \text {$\#$1}^4+9 \left (a^2\right )^2 \text {$\#$1}^2+9 c_1}}d\text {$\#$1}\& \right ][c_2-K[2]]dK[2]+c_3\right \}\right \}\]
✓ Maple : cpu = 0.283 (sec), leaf count = 105
dsolve(diff(diff(diff(y(x),x),x),x)-a^2*(diff(y(x),x)^5+2*diff(y(x),x)^3+diff(y(x),x))=0,y(x))
\[y \left (x \right ) = \int \operatorname {RootOf}\left (3 \left (\int _{}^{\textit {\_Z}}\frac {1}{\sqrt {3 \textit {\_f}^{6} a^{2}+9 a^{2} \textit {\_f}^{4}+9 \textit {\_f}^{2} a^{2}+3 a^{2}+9 c_{1}}}d \textit {\_f} \right )+x +c_{2} \right )d x +c_{3}\]