2.182   ODE No. 182

\[ \left (x^3-1\right ) x y'(x)+x^2-2 x y(x)^2+y(x)=0 \]

Mathematica : cpu = 0.134622 (sec), leaf count = 96

DSolve[x^2 + y[x] - 2*x*y[x]^2 + x*(-1 + x^3)*Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to -\frac {\left (x^3-1\right ) \left (\frac {x}{\left (1-x^3\right )^{2/3}}+\frac {x^4}{\left (1-x^3\right )^{5/3}}+\frac {2 c_1 x^2}{\left (1-x^3\right )^{5/3}}\right )}{2 \left (\frac {x^2}{2 \left (1-x^3\right )^{2/3}}+\frac {c_1}{\left (1-x^3\right )^{2/3}}\right )}\right \}\right \}\]

Maple : cpu = 0.144 (sec), leaf count = 18

dsolve(x*(x^3-1)*diff(y(x),x)-2*x*y(x)^2+y(x)+x^2 = 0,y(x))
 
\[y \left (x \right ) = \frac {x \left (x +c_{1} \right )}{x^{2} c_{1} +1}\]