2.1818   ODE No. 1818

\[ \left (x y'(x)-y(x)\right ) y''(x)-\left (y'(x)^2+1\right )^2=0 \]

Mathematica : cpu = 0.98725 (sec), leaf count = 0

DSolve[-(1 + Derivative[1][y][x]^2)^2 + (-y[x] + x*Derivative[1][y][x])*Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-(1 + Derivative[1][y][x]^2)^2 + (-y[x] + x*Derivative[1][y][x])*Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0.607 (sec), leaf count = 66

dsolve((x*diff(y(x),x)-y(x))*diff(diff(y(x),x),x)-(diff(y(x),x)^2+1)^2=0,y(x))
 
\[y \left (x \right ) = \operatorname {RootOf}\left (-\ln \left (x \right )+\int _{}^{\textit {\_Z}}\frac {-\textit {\_f} +\operatorname {RootOf}\left (-\tan \left (\frac {1}{\textit {\_Z}}\right ) c_{1} \textit {\_Z} +\textit {\_f} c_{1} \tan \left (\frac {1}{\textit {\_Z}}\right )+\tan \left (\frac {1}{\textit {\_Z}}\right ) \textit {\_Z} \textit {\_f} +c_{1} \textit {\_Z} \textit {\_f} +\tan \left (\frac {1}{\textit {\_Z}}\right )+c_{1} +\textit {\_Z} -\textit {\_f} \right )}{\textit {\_f}^{2}+1}d \textit {\_f} +c_{2} \right ) x\]