2.1816 ODE No. 1816
\[ x^2 (-y(x)) y'(x)+y'(x) y''(x)-x y(x)^2=0 \]
✗ Mathematica : cpu = 51.506 (sec), leaf count = 0
DSolve[-(x*y[x]^2) - x^2*y[x]*Derivative[1][y][x] + Derivative[1][y][x]*Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[-(x*y[x]^2) - x^2*y[x]*Derivative[1][y][x] + Derivative[1][y][x]*Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(diff(y(x),x)*diff(diff(y(x),x),x)-x^2*y(x)*diff(y(x),x)-x*y(x)^2=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \textit {\_}b\left (\textit {\_a} \right )\:\& \text {where}\:\left [\left \{-\textit {\_}b\left (\textit {\_a} \right )^{2} \textit {\_a}^{2}+\left (\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )\right )^{2}+c_{1} =0\right \}, \left \{\textit {\_a} =x , \textit {\_}b\left (\textit {\_a} \right )=y \left (x \right )\right \}, \left \{x =\textit {\_a} , y \left (x \right )=\textit {\_}b\left (\textit {\_a} \right )\right \}\right ]\]