2.1814   ODE No. 1814

\[ a h(y(x)) y'(x)^2+h(y(x)) y''(x)+j(y(x))=0 \]

Mathematica : cpu = 0.395846 (sec), leaf count = 120

DSolve[j[y[x]] + a*h[y[x]]*Derivative[1][y][x]^2 + h[y[x]]*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {e^{a K[2]}}{\sqrt {c_1+2 \int _1^{K[2]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[2]\& \right ][x+c_2]\right \},\left \{y(x)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {e^{a K[3]}}{\sqrt {c_1+2 \int _1^{K[3]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[3]\& \right ][x+c_2]\right \}\right \}\]

Maple : cpu = 0.136 (sec), leaf count = 87

dsolve(h(y(x))*diff(diff(y(x),x),x)+a*D(h)(y(x))*diff(y(x),x)^2+j(y(x))=0,y(x))
 
\[\int _{}^{y \left (x \right )}\frac {h \left (\textit {\_b} \right )^{a}}{\sqrt {-2 \left (\int \frac {h \left (\textit {\_b} \right )^{2 a}}{h \left (\textit {\_b} \right )}d \textit {\_b} \right )+c_{1}}}d \textit {\_b} -x -c_{2} = 0\]