2.1783   ODE No. 1783

\[ \left (y(x)^2+x\right ) y''(x)-2 \left (x-y(x)^2\right ) y'(x)^3+\left (4 y(x) y'(x)+1\right ) y'(x)=0 \]

Mathematica : cpu = 1.38727 (sec), leaf count = 26

DSolve[-2*(x - y[x]^2)*Derivative[1][y][x]^3 + Derivative[1][y][x]*(1 + 4*y[x]*Derivative[1][y][x]) + (x + y[x]^2)*Derivative[2][y][x] == 0,y[x],x]
 
\[\text {Solve}\left [x=-y(x)^2+c_2 e^{e^{-c_1} y(x)},y(x)\right ]\]

Maple : cpu = 0.158 (sec), leaf count = 23

dsolve((x+y(x)^2)*diff(diff(y(x),x),x)-2*(x-y(x)^2)*diff(y(x),x)^3+diff(y(x),x)*(1+4*y(x)*diff(y(x),x))=0,y(x))
 
\[\frac {-c_{1} y \left (x \right )+\ln \left (x +y \left (x \right )^{2}\right )+c_{2} +2}{y \left (x \right )} = 0\]