2.1762 ODE No. 1762
\[ a y(x) y'(x)+b x y(x)^3+x y(x) y''(x)-x y'(x)^2=0 \]
✗ Mathematica : cpu = 48.0592 (sec), leaf count = 0
DSolve[b*x*y[x]^3 + a*y[x]*Derivative[1][y][x] - x*Derivative[1][y][x]^2 + x*y[x]*Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[b*x*y[x]^3 + a*y[x]*Derivative[1][y][x] - x*Derivative[1][y][x]^2 + x*y[x]*Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(x*y(x)*diff(diff(y(x),x),x)-x*diff(y(x),x)^2+a*y(x)*diff(y(x),x)+b*x*y(x)^3=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \left (\textit {\_a} \,{\mathrm e}^{\int -2 \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} -2 c_{1}}\right )\:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=\textit {\_a} \left (b \textit {\_a} -2 a +2\right ) \textit {\_}b\left (\textit {\_a} \right )^{3}+\left (a -1\right ) \textit {\_}b\left (\textit {\_a} \right )^{2}-\frac {\textit {\_}b\left (\textit {\_a} \right )}{\textit {\_a}}\right \}, \left \{\textit {\_a} =x^{2} y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {1}{x^{2} \left (x \left (\frac {d}{d x}y \left (x \right )\right )+2 y \left (x \right )\right )}\right \}, \left \{x ={\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}, y \left (x \right )=\textit {\_a} \,{\mathrm e}^{\int -2 \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} -2 c_{1}}\right \}\right ]\]