2.176   ODE No. 176

\[ \left (x^2-1\right ) x y'(x)+\left (x^2-1\right ) y(x)^2-x^2=0 \]

Mathematica : cpu = 0.149872 (sec), leaf count = 82

DSolve[-x^2 + (-1 + x^2)*y[x]^2 + x*(-1 + x^2)*Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \frac {x \left (-2 x G_{2,2}^{2,0}\left (x^2|\begin {array}{c} -\frac {1}{2},\frac {1}{2} \\ -1,0 \\\end {array}\right )+\frac {2 c_1 \left (E\left (x^2\right )-K\left (x^2\right )\right )}{\pi x}\right )}{G_{2,2}^{2,0}\left (x^2|\begin {array}{c} \frac {1}{2},\frac {3}{2} \\ 0,0 \\\end {array}\right )+\frac {2 c_1 E\left (x^2\right )}{\pi }}\right \}\right \}\]

Maple : cpu = 0.099 (sec), leaf count = 30

dsolve(x*(x^2-1)*diff(y(x),x)+(x^2-1)*y(x)^2-x^2 = 0,y(x))
 
\[y \left (x \right ) = \frac {c_{1} \operatorname {EllipticCE}\left (x \right )+\operatorname {EllipticE}\left (x \right )-\operatorname {EllipticK}\left (x \right )}{c_{1} \operatorname {EllipticCE}\left (x \right )-c_{1} \operatorname {EllipticCK}\left (x \right )+\operatorname {EllipticE}\left (x \right )}\]