2.1745 ODE No. 1745
\[ 2 (y(x)-a) y''(x)+y'(x)^2+1=0 \]
✓ Mathematica : cpu = 0.545866 (sec), leaf count = 195
DSolve[1 + Derivative[1][y][x]^2 + 2*(-a + y[x])*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\frac {2 \sqrt {a-\text {$\#$1}} \sqrt {2 \text {$\#$1}-2 a+e^{2 c_1}}+\sqrt {2} e^{2 c_1} \tan ^{-1}\left (\frac {\sqrt {2 \text {$\#$1}-2 a+e^{2 c_1}}}{\sqrt {2} \sqrt {a-\text {$\#$1}}}\right )}{2 \sqrt {2}}\& \right ][x+c_2]\right \},\left \{y(x)\to \text {InverseFunction}\left [\frac {2 \sqrt {a-\text {$\#$1}} \sqrt {2 \text {$\#$1}-2 a+e^{2 c_1}}+\sqrt {2} e^{2 c_1} \tan ^{-1}\left (\frac {\sqrt {2 \text {$\#$1}-2 a+e^{2 c_1}}}{\sqrt {2} \sqrt {a-\text {$\#$1}}}\right )}{2 \sqrt {2}}\& \right ][x+c_2]\right \}\right \}\]
✓ Maple : cpu = 0.638 (sec), leaf count = 117
dsolve(2*(y(x)-a)*diff(diff(y(x),x),x)+diff(y(x),x)^2+1=0,y(x))
\[\frac {\arctan \left (\frac {y \left (x \right )-a -\frac {c_{1}}{2}}{\sqrt {-\left (-y \left (x \right )+a \right ) \left (a +c_{1} -y \left (x \right )\right )}}\right ) c_{1}}{2}-x -c_{2} -\sqrt {-\left (-y \left (x \right )+a \right ) \left (a +c_{1} -y \left (x \right )\right )} = 0\]