2.1742   ODE No. 1742

\[ f(x) y(x)^2+2 y(x) y''(x)-3 y'(x)^2=0 \]

Mathematica : cpu = 5.21911 (sec), leaf count = 0

DSolve[f[x]*y[x]^2 - 3*Derivative[1][y][x]^2 + 2*y[x]*Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[f[x]*y[x]^2 - 3*Derivative[1][y][x]^2 + 2*y[x]*Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(2*diff(diff(y(x),x),x)*y(x)-3*diff(y(x),x)^2+f(x)*y(x)^2=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \left ({\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right )\:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=\frac {\textit {\_}b\left (\textit {\_a} \right )^{2}}{2}-\frac {f \left (\textit {\_a} \right )}{2}\right \}, \left \{\textit {\_a} =x , \textit {\_}b\left (\textit {\_a} \right )=\frac {\frac {d}{d x}y \left (x \right )}{y \left (x \right )}\right \}, \left \{x =\textit {\_a} , y \left (x \right )={\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right \}\right ]\]