2.1726   ODE No. 1726

\[ (x-y(x)) y''(x)-h\left (y'(x)\right )=0 \]

Mathematica : cpu = 0.317638 (sec), leaf count = 82

DSolve[-h[Derivative[1][y][x]] + (x - y[x])*Derivative[2][y][x] == 0,y[x],x]
 
\[\text {Solve}\left [\left \{x=\int \frac {\exp \left (-\int _1^{K[4]}\frac {K[3]-1}{h(K[3])}dK[3]-c_1\right )}{h(K[4])} \, dK[4]+c_2,y(x)=x-\exp \left (-\int _1^{K[4]}\frac {K[3]-1}{h(K[3])}dK[3]-c_1\right )\right \},\{y(x),K[4]\}\right ]\]

Maple : cpu = 0.149 (sec), leaf count = 39

dsolve(diff(diff(y(x),x),x)*(x-y(x))-h(diff(y(x),x))=0,y(x))
 
\[y \left (x \right ) = x +\operatorname {RootOf}\left (-x +\int _{}^{\textit {\_Z}}\frac {1}{-1+\operatorname {RootOf}\left (\int _{}^{\textit {\_Z}}\frac {\textit {\_a} -1}{h \left (\textit {\_a} \right )}d \textit {\_a} +\ln \left (-\textit {\_g} \right )+c_{1} \right )}d \textit {\_g} +c_{2} \right )\]