2.1723 ODE No. 1723
\[ (y(x)+x) y''(x)+y'(x)^2-y'(x)=0 \]
✓ Mathematica : cpu = 1.08994 (sec), leaf count = 130
DSolve[-Derivative[1][y][x] + Derivative[1][y][x]^2 + (x + y[x])*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {1}{2} \left (2 x-\sqrt {2} e^{-2 c_1} \sqrt {4 e^{3 c_1} x+e^{2 c_1}+4 e^{3 c_1} c_2}+e^{-c_1}+4 c_2\right )\right \},\left \{y(x)\to \frac {1}{2} \left (2 x+\sqrt {2} e^{-2 c_1} \sqrt {4 e^{3 c_1} x+e^{2 c_1}+4 e^{3 c_1} c_2}+e^{-c_1}+4 c_2\right )\right \}\right \}\]
✓ Maple : cpu = 0.11 (sec), leaf count = 16
dsolve(diff(diff(y(x),x),x)*(y(x)+x)+diff(y(x),x)^2-diff(y(x),x)=0,y(x))
\[y \left (x \right ) = \sqrt {c_{1} +2 x}\, c_{2} +c_{1} +x\]