2.1716 ODE No. 1716
\[ a \left (y'(x)^2+1\right )+y(x) y''(x)=0 \]
✓ Mathematica : cpu = 0.64068 (sec), leaf count = 172
DSolve[a*(1 + Derivative[1][y][x]^2) + y[x]*Derivative[2][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\frac {\text {$\#$1} \sqrt {1-e^{2 c_1} \text {$\#$1}^{-2 a}} \, _2F_1\left (\frac {1}{2},-\frac {1}{2 a};1-\frac {1}{2 a};e^{2 c_1} \text {$\#$1}^{-2 a}\right )}{\sqrt {-1+e^{2 c_1} \text {$\#$1}^{-2 a}}}\& \right ][x+c_2]\right \},\left \{y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \sqrt {1-e^{2 c_1} \text {$\#$1}^{-2 a}} \, _2F_1\left (\frac {1}{2},-\frac {1}{2 a};1-\frac {1}{2 a};e^{2 c_1} \text {$\#$1}^{-2 a}\right )}{\sqrt {-1+e^{2 c_1} \text {$\#$1}^{-2 a}}}\& \right ][x+c_2]\right \}\right \}\]
✓ Maple : cpu = 0.285 (sec), leaf count = 68
dsolve(diff(diff(y(x),x),x)*y(x)+a*(diff(y(x),x)^2+1)=0,y(x))
\[\int _{}^{y \left (x \right )}\frac {\textit {\_a}^{a}}{\sqrt {-\textit {\_a}^{2 a}+c_{1}}}d \textit {\_a} -x -c_{2} = 0\]