2.1712   ODE No. 1712

\[ -f(x) y(x) y'(x)-g(x) y(x)^2+y(x) y''(x)-y'(x)^2=0 \]

Mathematica : cpu = 0.066564 (sec), leaf count = 75

DSolve[-(g[x]*y[x]^2) - f[x]*y[x]*Derivative[1][y][x] - Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to c_2 \exp \left (\int _1^x\left (\exp \left (\int _1^{K[3]}f(K[1])dK[1]\right ) c_1+\exp \left (\int _1^{K[3]}f(K[1])dK[1]\right ) \int _1^{K[3]}\exp \left (-\int _1^{K[2]}f(K[1])dK[1]\right ) g(K[2])dK[2]\right )dK[3]\right )\right \}\right \}\]

Maple : cpu = 0.263 (sec), leaf count = 37

dsolve(diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2-f(x)*y(x)*diff(y(x),x)-g(x)*y(x)^2=0,y(x))
 
\[y \left (x \right ) = {\mathrm e}^{c_{1} \left (\int {\mathrm e}^{\int f \left (x \right )d x}d x \right )} {\mathrm e}^{\int {\mathrm e}^{\int f \left (x \right )d x} \left (\int {\mathrm e}^{\int -f \left (x \right )d x} g \left (x \right )d x \right )d x} c_{2}\]