2.1709   ODE No. 1709

\[ 2 a^2 y(x)^2-(a y(x)-1) y'(x)+a y(x)-2 b^2 y(x)^3+y(x) y''(x)-y'(x)^2=0 \]

Mathematica : cpu = 54.6313 (sec), leaf count = 543

DSolve[a*y[x] + 2*a^2*y[x]^2 - 2*b^2*y[x]^3 - (-1 + a*y[x])*Derivative[1][y][x] - Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to -\frac {1}{2 a}+e^{2 a x} \left (\frac {e^{-2 a x} \left (c_1 \left (\sqrt {a^3+2 b^2}-a^{3/2}\right ) \Gamma \left (1-\frac {\sqrt {a^3+2 b^2}}{2 a^{3/2}}\right ) J_{-\frac {\sqrt {a^3+2 b^2}}{2 a^{3/2}}}\left (\frac {\sqrt {a b^2 e^{2 a x} c_2}}{a^{3/2}}\right )+2 c_1 \Gamma \left (1-\frac {\sqrt {a^3+2 b^2}}{2 a^{3/2}}\right ) \sqrt {a b^2 c_2 e^{2 a x}} J_{1-\frac {\sqrt {a^3+2 b^2}}{2 a^{3/2}}}\left (\frac {\sqrt {a b^2 e^{2 a x} c_2}}{a^{3/2}}\right )+\Gamma \left (\frac {\sqrt {a^3+2 b^2}}{2 a^{3/2}}+1\right ) \left (\left (-a^{3/2}-\sqrt {a^3+2 b^2}\right ) J_{\frac {\sqrt {a^3+2 b^2}}{2 a^{3/2}}}\left (\frac {\sqrt {a b^2 e^{2 a x} c_2}}{a^{3/2}}\right )+2 \sqrt {a b^2 c_2 e^{2 a x}} J_{\frac {\sqrt {a^3+2 b^2}}{2 a^{3/2}}+1}\left (\frac {\sqrt {a b^2 e^{2 a x} c_2}}{a^{3/2}}\right )\right )\right ){}^2}{4 a \left (b c_1 \Gamma \left (1-\frac {\sqrt {a^3+2 b^2}}{2 a^{3/2}}\right ) J_{-\frac {\sqrt {a^3+2 b^2}}{2 a^{3/2}}}\left (\frac {\sqrt {a b^2 e^{2 a x} c_2}}{a^{3/2}}\right )+b \Gamma \left (\frac {\sqrt {a^3+2 b^2}}{2 a^{3/2}}+1\right ) J_{\frac {\sqrt {a^3+2 b^2}}{2 a^{3/2}}}\left (\frac {\sqrt {a b^2 e^{2 a x} c_2}}{a^{3/2}}\right )\right ){}^2}+c_2\right )\right \}\right \}\]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2-(-1+a*y(x))*diff(y(x),x)+2*a^2*y(x)^2-2*b^2*y(x)^3+a*y(x)=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \textit {\_a} \:\& \text {where}\:\left [\left \{\left (\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )\right ) \textit {\_}b\left (\textit {\_a} \right )-\frac {2 b^{2} \textit {\_a}^{3}-2 \textit {\_a}^{2} a^{2}+\textit {\_a} \textit {\_}b\left (\textit {\_a} \right ) a +\textit {\_}b\left (\textit {\_a} \right )^{2}-\textit {\_a} a -\textit {\_}b\left (\textit {\_a} \right )}{\textit {\_a}}=0\right \}, \left \{\textit {\_a} =y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {d}{d x}y \left (x \right )\right \}, \left \{x =\int \frac {1}{\textit {\_}b\left (\textit {\_a} \right )}d \textit {\_a} +c_{1} , y \left (x \right )=\textit {\_a} \right \}\right ]\]