2.1703   ODE No. 1703

\[ y(x) y''(x)-y'(x)^2+y(x)^2 (-\log (y(x)))=0 \]

Mathematica : cpu = 0.382416 (sec), leaf count = 77

DSolve[-(Log[y[x]]*y[x]^2) - Derivative[1][y][x]^2 + y[x]*Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \exp \left (-\frac {1}{2} \sqrt {c_1} e^{-x-c_2} \left (-1+e^{2 x+2 c_2}\right )\right )\right \},\left \{y(x)\to \exp \left (\frac {1}{2} \sqrt {c_1} e^{-x-c_2} \left (-1+e^{2 x+2 c_2}\right )\right )\right \}\right \}\]

Maple : cpu = 0.223 (sec), leaf count = 25

dsolve(diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2-y(x)^2*ln(y(x))=0,y(x))
 
\[y \left (x \right ) = {\mathrm e}^{-\frac {{\mathrm e}^{2 x} {\mathrm e}^{-x} c_{1}}{2}} {\mathrm e}^{\frac {c_{2} {\mathrm e}^{-x}}{2}}\]