2.17   ODE No. 17

\[ y'(x)-y(x)^2-3 y(x)+4=0 \]

Mathematica : cpu = 0.0504301 (sec), leaf count = 34

DSolve[4 - 3*y[x] - y[x]^2 + Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \frac {-1-4 e^{5 x+5 c_1}}{-1+e^{5 x+5 c_1}}\right \}\right \}\]

Maple : cpu = 0.076 (sec), leaf count = 24

dsolve(diff(y(x),x)-y(x)^2-3*y(x)+4 = 0,y(x))
 
\[y \left (x \right ) = \frac {-4 \,{\mathrm e}^{5 x} c_{1} -1}{-1+{\mathrm e}^{5 x} c_{1}}\]

Hand solution

\begin{align} y^{\prime }-y^{2}-3y+4 & =0\nonumber \\ y^{\prime } & =3y-4+y^{2}\tag {1}\end{align}

This is Riccati first order non-linear ODE of the form. The general form is

\[ y^{\prime }=P\left ( x\right ) +Q\left ( x\right ) y+R\left ( x\right ) y^{2}\]

Where \(P\left ( x\right ) =-4,Q\left ( x\right ) =3,R\left ( x\right ) =1\). Using the substitution \(y=-\frac {u^{\prime }}{uR\left ( x\right ) }=\frac {-u^{\prime }}{u}\) then

\begin{align*} u^{\prime } & =-yu\\ u^{\prime \prime } & =-yu^{\prime }-y^{\prime }u\\ & =-y\left ( -yu\right ) -\left ( 3y-4+y^{2}\right ) u\\ & =y^{2}u-3\left ( -\frac {u^{\prime }}{u}\right ) u+4u-y^{2}u\\ & =3u^{\prime }+4u \end{align*}

Hence

\begin{equation} u^{\prime \prime }-3u^{\prime }-4u=0\nonumber \end{equation}

This is standard second order ODE. The characteristic equation is  \(\lambda ^{2}-3\lambda -4=0\), with roots \(\frac {-b\pm \sqrt {b^{2}-4ac}}{2a}=\frac {3\pm \sqrt {9+16}}{2}=\frac {3\pm 5}{2}=\left \{ 4,-1\right \} \), hence

\[ u\left ( x\right ) =c_{1}e^{4x}+c_{2}e^{-x}\]

And

\[ u^{\prime }\left ( x\right ) =c_{1}4e^{4x}-c_{2}e^{-x}\]

Since \(y=\frac {-u^{\prime }}{u}\) then

\begin{align*} y\left ( x\right ) & =\frac {-c_{1}4e^{4x}+c_{2}e^{-x}}{c_{1}e^{4x}+c_{2}e^{-x}}\\ & =\frac {-\frac {c_{1}}{c_{2}}4e^{4x}+e^{-x}}{\frac {c_{1}}{c_{2}}e^{4x}+e^{-x}}\end{align*}

Let \(\frac {c_{1}}{c_{2}}=C_{1}\) then

\[ y\left ( x\right ) =\frac {-4C_{1}e^{4x}+e^{-x}}{C_{1}e^{4x}+e^{-x}}\]

Dividing by \(e^{-x}\)

\[ y\left ( x\right ) =\frac {-4C_{1}e^{5x}+1}{C_{1}e^{5x}+1}\]

This is the same result given by CAS. To see it better, let \(C_{2}=-C_{1}\) then the above becomes

\begin{align*} y\left ( x\right ) & =\frac {4C_{2}e^{5x}+1}{-C_{2}e^{5x}+1}\\ & =-\frac {4C_{2}e^{5x}+1}{C_{2}e^{5x}-1}\end{align*}