2.1693 ODE No. 1693
\[ -h\left (y(x),f(x) y'(x)\right )+f(x) f'(x) y'(x)+f(x)^2 y''(x)=0 \]
✗ Mathematica : cpu = 1.09226 (sec), leaf count = 0
DSolve[-h[y[x], f[x]*Derivative[1][y][x]] + f[x]*Derivative[1][f][x]*Derivative[1][y][x] + f[x]^2*Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[-h[y[x], f[x]*Derivative[1][y][x]] + f[x]*Derivative[1][f][x]*Derivative[1][y][x] + f[x]^2*Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(f(x)^2*diff(diff(y(x),x),x)+f(x)*diff(f(x),x)*diff(y(x),x)-h(y(x),f(x)*diff(y(x),x))=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \textit {\_a} \:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=-h \left (\textit {\_a} , \frac {1}{\textit {\_}b\left (\textit {\_a} \right )}\right ) \textit {\_}b\left (\textit {\_a} \right )^{3}\right \}, \left \{\textit {\_a} =y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {1}{f \left (x \right ) \left (\frac {d}{d x}y \left (x \right )\right )}\right \}, \left \{x =\operatorname {RootOf}\left (\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1} -\left (\int _{}^{\textit {\_Z}}\frac {1}{f \left (\textit {\_f} \right )}d \textit {\_f} \right )\right ), y \left (x \right )=\textit {\_a} \right \}\right ]\]