2.169 ODE No. 169
\[ (a x+b)^2 y'(x)+y(x)^3 (a x+b)+c y(x)^2=0 \]
✓ Mathematica : cpu = 1.42364 (sec), leaf count = 149
DSolve[c*y[x]^2 + (b + a*x)*y[x]^3 + (b + a*x)^2*Derivative[1][y][x] == 0,y[x],x]
\[\text {Solve}\left [-\frac {c}{\sqrt {-a (a x+b)^2}}=\frac {2 \exp \left (\frac {1}{2} \left (-\frac {c}{\sqrt {-a (a x+b)^2}}-\frac {\left (-a (a x+b)^2\right )^{3/2}}{a y(x) (a x+b)^3}\right )^2\right )}{\sqrt {2 \pi } \text {erfi}\left (\frac {-\frac {c}{\sqrt {-a (a x+b)^2}}-\frac {\left (-a (a x+b)^2\right )^{3/2}}{a y(x) (a x+b)^3}}{\sqrt {2}}\right )+2 c_1},y(x)\right ]\]
✓ Maple : cpu = 0.232 (sec), leaf count = 153
dsolve((a*x+b)^2*diff(y(x),x)+(a*x+b)*y(x)^3+c*y(x)^2 = 0,y(x))
\[\frac {\left (\operatorname {erf}\left (\frac {\sqrt {2}\, \left (y \left (x \right ) c +a \left (a x +b \right )\right )}{2 \sqrt {a}\, y \left (x \right ) \left (a x +b \right )}\right ) {\mathrm e}^{\frac {\left (y \left (x \right ) c +a \left (a x +b \right )\right )^{2}}{2 y \left (x \right )^{2} \left (a x +b \right )^{2} a}} \sqrt {2}\, \sqrt {\pi }\, a c +2 a^{{3}/{2}} \left (a x +b \right )\right ) {\mathrm e}^{-\frac {\left (\left (-a x -b +c \right ) y \left (x \right )+a \left (a x +b \right )\right ) \left (\left (a x +b +c \right ) y \left (x \right )+a \left (a x +b \right )\right )}{2 y \left (x \right )^{2} \left (a x +b \right )^{2} a}}+2 c_{1} a^{{5}/{2}}}{2 a^{{5}/{2}}} = 0\]