2.1677 ODE No. 1677
\[ a y(x) y'(x)^2+b x+x^2 y''(x)=0 \]
✗ Mathematica : cpu = 30.8249 (sec), leaf count = 0
DSolve[b*x + a*y[x]*Derivative[1][y][x]^2 + x^2*Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[b*x + a*y[x]*Derivative[1][y][x]^2 + x^2*Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(x^2*diff(diff(y(x),x),x)+a*y(x)*diff(y(x),x)^2+b*x=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \left (\textit {\_a} \,{\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right )\:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=\left (\textit {\_a}^{3} a +b \right ) \textit {\_}b\left (\textit {\_a} \right )^{3}+\left (2 \textit {\_a}^{2} a +1\right ) \textit {\_}b\left (\textit {\_a} \right )^{2}+\textit {\_a} \textit {\_}b\left (\textit {\_a} \right ) a \right \}, \left \{\textit {\_a} =\frac {y \left (x \right )}{x}, \textit {\_}b\left (\textit {\_a} \right )=-\frac {x}{-x \left (\frac {d}{d x}y \left (x \right )\right )+y \left (x \right )}\right \}, \left \{x ={\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}, y \left (x \right )=\textit {\_a} \,{\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right \}\right ]\]