2.1666 ODE No. 1666
\[ a y'(x)+b x e^{y(x)}+x y''(x)=0 \]
✗ Mathematica : cpu = 0.374224 (sec), leaf count = 0
DSolve[b*E^y[x]*x + a*Derivative[1][y][x] + x*Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[b*E^y[x]*x + a*Derivative[1][y][x] + x*Derivative[2][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(x*diff(diff(y(x),x),x)+a*diff(y(x),x)+b*x*exp(y(x))=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \left (\textit {\_a} -2 \left (\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} \right )-2 c_{1} \right )\:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=\left (b \,{\mathrm e}^{\textit {\_a}}-2 a +2\right ) \textit {\_}b\left (\textit {\_a} \right )^{3}+\left (a -1\right ) \textit {\_}b\left (\textit {\_a} \right )^{2}\right \}, \left \{\textit {\_a} =y \left (x \right )+2 \ln \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {1}{x \left (\frac {d}{d x}y \left (x \right )\right )+2}\right \}, \left \{x ={\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}, y \left (x \right )=\textit {\_a} -2 \left (\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} \right )-2 c_{1} \right \}\right ]\]