2.1663   ODE No. 1663

\[ -x y(x)^n+x y''(x)+2 y'(x)=0 \]

Mathematica : cpu = 0.0372603 (sec), leaf count = 0

DSolve[-(x*y[x]^n) + 2*Derivative[1][y][x] + x*Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-(x*y[x]^n) + 2*Derivative[1][y][x] + x*Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(x*diff(diff(y(x),x),x)+2*diff(y(x),x)-x*y(x)^n=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \left (\textit {\_a} \,{\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right )\:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=\left (-\frac {\textit {\_a}^{n} n^{2}}{4}+\frac {\textit {\_a}^{n} n}{2}-\frac {\textit {\_a} n}{2}-\frac {\textit {\_a}^{n}}{4}+\frac {3 \textit {\_a}}{2}\right ) \textit {\_}b\left (\textit {\_a} \right )^{3}+\left (-\frac {n}{2}+\frac {5}{2}\right ) \textit {\_}b\left (\textit {\_a} \right )^{2}\right \}, \left \{\textit {\_a} =y \left (x \right ) x^{\frac {2}{n -1}}, \textit {\_}b\left (\textit {\_a} \right )=-\frac {2 x^{-\frac {2}{n -1}}}{n x \left (\frac {d}{d x}y \left (x \right )\right )-x \left (\frac {d}{d x}y \left (x \right )\right )+2 y \left (x \right )}\right \}, \left \{x ={\mathrm e}^{-\frac {\left (\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1} \right ) n}{2}+\frac {\left (\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} \right )}{2}+\frac {c_{1}}{2}}, y \left (x \right )=\textit {\_a} \,{\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right \}\right ]\]