2.1652   ODE No. 1652

\[ y''(x)-a \sqrt {b y(x)^2+y'(x)^2}=0 \]

Mathematica : cpu = 0.529796 (sec), leaf count = 76

DSolve[-(a*Sqrt[b*y[x]^2 + Derivative[1][y][x]^2]) + Derivative[2][y][x] == 0,y[x],x]
 
\[\text {Solve}\left [\int _1^{y(x)}\frac {1}{\text {InverseFunction}\left [\int \frac {\text {$\#$1}}{K[1] \left (\frac {\text {$\#$1}^2}{K[1]^2}-a \sqrt {\frac {\text {$\#$1}^2}{K[1]^2}+b}\right )}d\frac {\text {$\#$1}}{K[1]}\& \right ][c_1-\log (K[1])]}dK[1]=x-c_2,y(x)\right ]\]

Maple : cpu = 0.919 (sec), leaf count = 33

dsolve(diff(diff(y(x),x),x)-a*(b*y(x)^2+diff(y(x),x)^2)^(1/2)=0,y(x))
 
\[y \left (x \right ) = {\mathrm e}^{\int \operatorname {RootOf}\left (x +\int _{}^{\textit {\_Z}}\frac {1}{-a \sqrt {\textit {\_f}^{2}+b}+\textit {\_f}^{2}}d \textit {\_f} +c_{1} \right )d x +c_{2}}\]