2.1648   ODE No. 1648

\[ y''(x)-k x^a y(x)^b y'(x)^c=0 \]

Mathematica : cpu = 0.0723127 (sec), leaf count = 0

DSolve[-(k*x^a*y[x]^b*Derivative[1][y][x]^c) + Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-(k*x^a*y[x]^b*Derivative[1][y][x]^c) + Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(y(x),x),x)-k*x^a*y(x)^b*diff(y(x),x)^c=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \left (\textit {\_a} \,{\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right )\:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=-\frac {\left (\left (-\frac {\left (a -c +2\right ) \left (\textit {\_a} \textit {\_}b\left (\textit {\_a} \right )+1\right )}{\textit {\_}b\left (\textit {\_a} \right ) \left (b +c -1\right )}\right )^{c} \textit {\_a}^{b} b^{2} k +2 \left (-\frac {\left (a -c +2\right ) \left (\textit {\_a} \textit {\_}b\left (\textit {\_a} \right )+1\right )}{\textit {\_}b\left (\textit {\_a} \right ) \left (b +c -1\right )}\right )^{c} \textit {\_a}^{b} b c k +\left (-\frac {\left (a -c +2\right ) \left (\textit {\_a} \textit {\_}b\left (\textit {\_a} \right )+1\right )}{\textit {\_}b\left (\textit {\_a} \right ) \left (b +c -1\right )}\right )^{c} \textit {\_a}^{b} c^{2} k -2 \left (-\frac {\left (a -c +2\right ) \left (\textit {\_a} \textit {\_}b\left (\textit {\_a} \right )+1\right )}{\textit {\_}b\left (\textit {\_a} \right ) \left (b +c -1\right )}\right )^{c} \textit {\_a}^{b} b k -2 \left (-\frac {\left (a -c +2\right ) \left (\textit {\_a} \textit {\_}b\left (\textit {\_a} \right )+1\right )}{\textit {\_}b\left (\textit {\_a} \right ) \left (b +c -1\right )}\right )^{c} \textit {\_a}^{b} c k +\left (-\frac {\left (a -c +2\right ) \left (\textit {\_a} \textit {\_}b\left (\textit {\_a} \right )+1\right )}{\textit {\_}b\left (\textit {\_a} \right ) \left (b +c -1\right )}\right )^{c} \textit {\_a}^{b} k -\textit {\_a} \,a^{2}-\textit {\_a} a b +\textit {\_a} a c +\textit {\_a} c b -3 \textit {\_a} a -2 b \textit {\_a} +c \textit {\_a} -2 \textit {\_a} \right ) \textit {\_}b\left (\textit {\_a} \right )^{3}}{\left (a -c +2\right )^{2}}+\frac {\left (2 a +b -c +3\right ) \textit {\_}b\left (\textit {\_a} \right )^{2}}{a -c +2}\right \}, \left \{\textit {\_a} =y \left (x \right ) x^{\frac {a -c +2}{b +c -1}}, \textit {\_}b\left (\textit {\_a} \right )=-\frac {\left (a -c +2\right ) x^{-\frac {a -c +2}{b +c -1}}}{b x \left (\frac {d}{d x}y \left (x \right )\right )+x \left (\frac {d}{d x}y \left (x \right )\right ) c +a y \left (x \right )-y \left (x \right ) c -x \left (\frac {d}{d x}y \left (x \right )\right )+2 y \left (x \right )}\right \}, \left \{x ={\mathrm e}^{-\frac {\left (\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1} \right ) \left (b +c -1\right )}{a -c +2}}, y \left (x \right )=\textit {\_a} \,{\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right \}\right ]\]