2.1646   ODE No. 1646

\[ a y(x) \left (y'(x)^2+1\right )^2+y''(x)=0 \]

Mathematica : cpu = 10.6839 (sec), leaf count = 262

DSolve[a*y[x]*(1 + Derivative[1][y][x]^2)^2 + Derivative[2][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\frac {\sqrt {\frac {\text {$\#$1}^2 (-a)+1+2 c_1}{1+2 c_1}} \sqrt {2 \text {$\#$1}^2 a-4 c_1} E\left (\sin ^{-1}\left (\sqrt {\frac {a}{2 c_1+1}} \text {$\#$1}\right )|1+\frac {1}{2 c_1}\right )}{\sqrt {\frac {a}{1+2 c_1}} \sqrt {\text {$\#$1}^2 (-a)+1+2 c_1} \sqrt {2-\frac {\text {$\#$1}^2 a}{c_1}}}\& \right ][x+c_2]\right \},\left \{y(x)\to \text {InverseFunction}\left [\frac {\sqrt {\frac {\text {$\#$1}^2 (-a)+1+2 c_1}{1+2 c_1}} \sqrt {2 \text {$\#$1}^2 a-4 c_1} E\left (\sin ^{-1}\left (\sqrt {\frac {a}{2 c_1+1}} \text {$\#$1}\right )|1+\frac {1}{2 c_1}\right )}{\sqrt {\frac {a}{1+2 c_1}} \sqrt {\text {$\#$1}^2 (-a)+1+2 c_1} \sqrt {2-\frac {\text {$\#$1}^2 a}{c_1}}}\& \right ][x+c_2]\right \}\right \}\]

Maple : cpu = 0.265 (sec), leaf count = 94

dsolve(diff(diff(y(x),x),x)+a*y(x)*(diff(y(x),x)^2+1)^2=0,y(x))
 
\[\int _{}^{y \left (x \right )}\frac {a \left (\textit {\_a}^{2}+2 c_{1} \right )}{\sqrt {-\left (-1+a \left (\textit {\_a}^{2}+2 c_{1} \right )\right ) a \left (\textit {\_a}^{2}+2 c_{1} \right )}}d \textit {\_a} -x -c_{2} = 0\]