2.1636   ODE No. 1636

\[ a y'(x) \left | y'(x)\right | +b y'(x)+c y(x)+y''(x)=0 \]

Mathematica : cpu = 5.39889 (sec), leaf count = 0

DSolve[c*y[x] + b*Derivative[1][y][x] + a*Abs[Derivative[1][y][x]]*Derivative[1][y][x] + Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[c*y[x] + b*Derivative[1][y][x] + a*Abs[Derivative[1][y][x]]*Derivative[1][y][x] + Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(y(x),x),x)+a*diff(y(x),x)*abs(diff(y(x),x))+b*diff(y(x),x)+y(x)*c=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \textit {\_a} \:\& \text {where}\:\left [\left \{\left (\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )\right ) \textit {\_}b\left (\textit {\_a} \right )+a \textit {\_}b\left (\textit {\_a} \right ) {| \textit {\_}b\left (\textit {\_a} \right )|}+\textit {\_}b\left (\textit {\_a} \right ) b +c \textit {\_a} =0\right \}, \left \{\textit {\_a} =y \left (x \right ), \textit {\_}b\left (\textit {\_a} \right )=\frac {d}{d x}y \left (x \right )\right \}, \left \{x =\int \frac {1}{\textit {\_}b\left (\textit {\_a} \right )}d \textit {\_a} +c_{1} , y \left (x \right )=\textit {\_a} \right \}\right ]\]