2.1601   ODE No. 1601

\[ a x^r y(x)^n+y''(x)=0 \]

Mathematica : cpu = 0.044499 (sec), leaf count = 0

DSolve[a*x^r*y[x]^n + Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[a*x^r*y[x]^n + Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(diff(y(x),x),x)+a*x^r*y(x)^n=0,y(x))
 

, result contains DESol or ODESolStruc

\[y \left (x \right ) = \left (\textit {\_a} \,{\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right )\:\& \text {where}\:\left [\left \{\frac {d}{d \textit {\_a}}\textit {\_}b\left (\textit {\_a} \right )=\frac {\left (\textit {\_a}^{n} a \,n^{2}-2 \textit {\_a}^{n} a n +\textit {\_a} r n +\textit {\_a} \,r^{2}+\textit {\_a}^{n} a +2 \textit {\_a} n +3 \textit {\_a} r +2 \textit {\_a} \right ) \textit {\_}b\left (\textit {\_a} \right )^{3}}{\left (r +2\right )^{2}}+\frac {\left (2 r +n +3\right ) \textit {\_}b\left (\textit {\_a} \right )^{2}}{r +2}\right \}, \left \{\textit {\_a} =y \left (x \right ) x^{\frac {r +2}{n -1}}, \textit {\_}b\left (\textit {\_a} \right )=-\frac {\left (r +2\right ) x^{-\frac {r +2}{n -1}}}{n x \left (\frac {d}{d x}y \left (x \right )\right )-x \left (\frac {d}{d x}y \left (x \right )\right )+y \left (x \right ) r +2 y \left (x \right )}\right \}, \left \{x ={\mathrm e}^{-\frac {\left (\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1} \right ) \left (n -1\right )}{r +2}}, y \left (x \right )=\textit {\_a} \,{\mathrm e}^{\int \textit {\_}b\left (\textit {\_a} \right )d \textit {\_a} +c_{1}}\right \}\right ]\]