2.1524 ODE No. 1524
\[ x^6 y^{(3)}(x)+x^2 y''(x)-2 y(x)=0 \]
✓ Mathematica : cpu = 0.181423 (sec), leaf count = 96
DSolve[-2*y[x] + x^2*Derivative[2][y][x] + x^6*Derivative[3][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to -\frac {\left (-\frac {1}{3}\right )^{2/3} c_2 x \Gamma \left (\frac {1}{3}\right ) \, _2F_2\left (-\frac {2}{3},\frac {1}{3};\frac {2}{3},\frac {4}{3};\frac {1}{3 x^3}\right )}{3 \Gamma \left (\frac {4}{3}\right )}+\frac {c_3 \Gamma \left (\frac {2}{3}\right ) \, _2F_2\left (-\frac {1}{3},\frac {2}{3};\frac {4}{3},\frac {5}{3};\frac {1}{3 x^3}\right )}{9 \Gamma \left (\frac {5}{3}\right )}+c_1 x^2\right \}\right \}\]
✓ Maple : cpu = 0.604 (sec), leaf count = 98
dsolve(x^6*diff(diff(diff(y(x),x),x),x)+x^2*diff(diff(y(x),x),x)-2*y(x)=0,y(x))
\[y \left (x \right ) = x^{2} \left (\left (\int \frac {{\mathrm e}^{\frac {1}{6 x^{3}}} \left (2 x^{3} \operatorname {BesselI}\left (\frac {1}{6}, -\frac {1}{6 x^{3}}\right )-\operatorname {BesselI}\left (\frac {1}{6}, -\frac {1}{6 x^{3}}\right )-\operatorname {BesselI}\left (-\frac {5}{6}, -\frac {1}{6 x^{3}}\right )\right )}{x^{{11}/{2}}}d x \right ) c_{2} +\left (\int \frac {{\mathrm e}^{\frac {1}{6 x^{3}}} \left (2 x^{3} \operatorname {BesselK}\left (\frac {1}{6}, -\frac {1}{6 x^{3}}\right )-\operatorname {BesselK}\left (\frac {1}{6}, -\frac {1}{6 x^{3}}\right )+\operatorname {BesselK}\left (\frac {5}{6}, -\frac {1}{6 x^{3}}\right )\right )}{x^{{11}/{2}}}d x \right ) c_{3} +c_{1} \right )\]