2.152 ODE No. 152
\[ \left (x^2+1\right ) y'(x)-x \left (x^2+1\right ) \cos ^2(y(x))+x \sin (y(x)) \cos (y(x))=0 \]
✓ Mathematica : cpu = 0.266637 (sec), leaf count = 40
DSolve[-(x*(1 + x^2)*Cos[y[x]]^2) + x*Cos[y[x]]*Sin[y[x]] + (1 + x^2)*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \tan ^{-1}\left (\frac {x^4+2 x^2-6 c_1 \sqrt {x^2+1}+1}{3 \left (x^2+1\right )}\right )\right \}\right \}\]
✓ Maple : cpu = 1.145 (sec), leaf count = 142
dsolve((x^2+1)*diff(y(x),x)+x*sin(y(x))*cos(y(x))-x*(x^2+1)*cos(y(x))^2 = 0,y(x))
\[y \left (x \right ) = \frac {\arctan \left (\frac {6 \sqrt {x^{2}+1}\, \left (\sqrt {x^{2}+1}\, x^{2}+\sqrt {x^{2}+1}+3 c_{1} \right )}{10+6 c_{1} \left (x^{2}+1\right )^{{3}/{2}}+x^{6}+3 x^{4}+12 x^{2}+9 c_{1}^{2}}, \frac {8+6 \left (-x^{2}-1\right ) c_{1} \sqrt {x^{2}+1}-x^{6}-3 x^{4}+6 x^{2}-9 c_{1}^{2}}{10+6 c_{1} \left (x^{2}+1\right )^{{3}/{2}}+x^{6}+3 x^{4}+12 x^{2}+9 c_{1}^{2}}\right )}{2}\]