2.1517 ODE No. 1517
\[ x^3 y^{(3)}(x)-2 x^3+x^2 y''(x)+2 x y'(x)-y(x)+\log (x)=0 \]
✓ Mathematica : cpu = 0.600089 (sec), leaf count = 601
DSolve[-2*x^3 + Log[x] - y[x] + 2*x*Derivative[1][y][x] + x^2*Derivative[2][y][x] + x^3*Derivative[3][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {i \left (-\right ) \left (\frac {2 x^3}{3-}+\frac {\log (x)}{}+\frac {1}{^2}\right )}{\sqrt {23}}-\frac {i \left (-\right ) \left (\frac {2 x^3}{3-}+\frac {\log (x)}{}+\frac {1}{^2}\right )}{\sqrt {23}}+\frac {i \left (-\right ) x^{++-2} \left (\frac {2 x^3}{++1}-\frac {\log (x)}{+-2}+\frac {1}{\left (+-2\right )^2}\right )}{\sqrt {23}}+c_1 x^{}+c_3 x^{}+c_2 x^{}\right \}\right \}\]
✓ Maple : cpu = 0.657 (sec), leaf count = 866
dsolve(x^3*diff(diff(diff(y(x),x),x),x)+x^2*diff(diff(y(x),x),x)+ln(x)+2*x*diff(y(x),x)-y(x)-2*x^3=0,y(x))
\[\text {Expression too large to display}\]