2.1510 ODE No. 1510
\[ y(x) \left (a (\nu -1) x^{2 \nu }+b x^{3 \nu }+\nu ^2-1\right )+x \left (a x^{2 \nu }-\nu ^2+1\right ) y'(x)+x^3 y^{(3)}(x)=0 \]
✓ Mathematica : cpu = 0.0402324 (sec), leaf count = 102
DSolve[(-1 + nu^2 + a*(-1 + nu)*x^(2*nu) + b*x^(3*nu))*y[x] + x*(1 - nu^2 + a*x^(2*nu))*Derivative[1][y][x] + x^3*Derivative[3][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to c_1 x^{1-\nu } e^{\frac {x^{\nu } \text {Root}\left [\text {$\#$1}^3+\text {$\#$1} a+b\& ,1\right ]}{\nu }}+c_2 x^{1-\nu } e^{\frac {x^{\nu } \text {Root}\left [\text {$\#$1}^3+\text {$\#$1} a+b\& ,2\right ]}{\nu }}+c_3 x^{1-\nu } e^{\frac {x^{\nu } \text {Root}\left [\text {$\#$1}^3+\text {$\#$1} a+b\& ,3\right ]}{\nu }}\right \}\right \}\]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(x^3*diff(diff(diff(y(x),x),x),x)+(a*x^(2*nu)+1-nu^2)*x*diff(y(x),x)+(b*x^(3*nu)+a*(nu-1)*x^(2*nu)+nu^2-1)*y(x)=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \operatorname {DESol}\left (\left \{x^{3} \left (\frac {d^{3}}{d x^{3}}\textit {\_Y} \left (x \right )\right )+\left (x^{2 \nu } a x -\nu ^{2} x +x \right ) \left (\frac {d}{d x}\textit {\_Y} \left (x \right )\right )+\left (x^{2 \nu } a \nu -a \,x^{2 \nu }+b \,x^{3 \nu }+\nu ^{2}-1\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\]