2.1502   ODE No. 1502

\[ -\left (x^4-6 x\right ) y''(x)-\left (2 x^3-6\right ) y'(x)+x^2 y^{(3)}(x)+2 x^2 y(x)=0 \]

Mathematica : cpu = 0.0891497 (sec), leaf count = 98

DSolve[2*x^2*y[x] - (-6 + 2*x^3)*Derivative[1][y][x] - (-6*x + x^4)*Derivative[2][y][x] + x^2*Derivative[3][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \frac {c_2 \Gamma \left (\frac {1}{3}\right ) \, _2F_2\left (-\frac {2}{3},\frac {1}{3};\frac {2}{3},\frac {4}{3};\frac {x^3}{3}\right )}{3 x \Gamma \left (\frac {4}{3}\right )}+\frac {\sqrt [3]{-\frac {1}{3}} c_3 \Gamma \left (\frac {2}{3}\right ) \, _2F_2\left (-\frac {1}{3},\frac {2}{3};\frac {4}{3},\frac {5}{3};\frac {x^3}{3}\right )}{3 \Gamma \left (\frac {5}{3}\right )}+\frac {c_1}{x^2}\right \}\right \}\]

Maple : cpu = 0.562 (sec), leaf count = 103

dsolve(x^2*diff(diff(diff(y(x),x),x),x)-(x^4-6*x)*diff(diff(y(x),x),x)-(2*x^3-6)*diff(y(x),x)+2*x^2*y(x)=0,y(x))
 
\[y \left (x \right ) = \frac {c_{3} \left (\int {\mathrm e}^{\frac {x^{3}}{6}} \sqrt {x}\, \left (\operatorname {BesselK}\left (\frac {5}{6}, -\frac {x^{3}}{6}\right ) x^{3}-\operatorname {BesselK}\left (\frac {1}{6}, -\frac {x^{3}}{6}\right ) x^{3}+2 \operatorname {BesselK}\left (\frac {1}{6}, -\frac {x^{3}}{6}\right )\right )d x \right )+c_{2} \left (\int {\mathrm e}^{\frac {x^{3}}{6}} \sqrt {x}\, \left (\operatorname {BesselI}\left (-\frac {5}{6}, -\frac {x^{3}}{6}\right ) x^{3}+\operatorname {BesselI}\left (\frac {1}{6}, -\frac {x^{3}}{6}\right ) x^{3}-2 \operatorname {BesselI}\left (\frac {1}{6}, -\frac {x^{3}}{6}\right )\right )d x \right )+c_{1}}{x^{2}}\]