2.1500 ODE No. 1500
\[ \nu (2 x+1) y'(x)-\nu (x+1) y(x)-x (v+x) y''(x)+x^2 y^{(3)}(x)=0 \]
✗ Mathematica : cpu = 29.874 (sec), leaf count = 0
DSolve[-(nu*(1 + x)*y[x]) + nu*(1 + 2*x)*Derivative[1][y][x] - x*(v + x)*Derivative[2][y][x] + x^2*Derivative[3][y][x] == 0,y[x],x]
, DifferentialRoot result
\[\left \{\left \{y(x)\to (x)\right \}\right \}\]
✓ Maple : cpu = 0.201 (sec), leaf count = 55
dsolve(x^2*diff(diff(diff(y(x),x),x),x)-(x+nu)*x*diff(diff(y(x),x),x)+nu*(2*x+1)*diff(y(x),x)-nu*(1+x)*y(x)=0,y(x))
\[y \left (x \right ) = c_{1} {\mathrm e}^{x}+c_{2} x^{\frac {\nu }{2}+\frac {1}{2}} \operatorname {BesselJ}\left (-\nu -1, 2 \sqrt {\nu }\, \sqrt {x}\right )+c_{3} x^{\frac {\nu }{2}+\frac {1}{2}} \operatorname {BesselY}\left (-\nu -1, 2 \sqrt {\nu }\, \sqrt {x}\right )\]