2.1485 ODE No. 1485
\[ (x-2) x y^{(3)}(x)-(x-2) x y''(x)-2 y'(x)+2 y(x)=0 \]
✓ Mathematica : cpu = 0.343955 (sec), leaf count = 64
DSolve[2*y[x] - 2*Derivative[1][y][x] - (-2 + x)*x*Derivative[2][y][x] + (-2 + x)*x*Derivative[3][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {1}{4} c_3 x^2 \left (-\frac {4 e^{x-2} \text {Ei}(2-x)}{x^2}+\frac {2}{x^2}+\frac {2}{x}+\log (2-x)-\log (x)\right )+c_1 x^2+c_2 e^x\right \}\right \}\]
✓ Maple : cpu = 0.327 (sec), leaf count = 51
dsolve((x-2)*x*diff(diff(diff(y(x),x),x),x)-(x-2)*x*diff(diff(y(x),x),x)-2*diff(y(x),x)+2*y(x)=0,y(x))
\[y \left (x \right ) = c_{3} \operatorname {Ei}_{1}\left (x -2\right ) {\mathrm e}^{x -2}+\frac {c_{3} x^{2} \ln \left (x -2\right )}{4}+c_{2} {\mathrm e}^{x}-\frac {c_{3} x^{2} \ln \left (x \right )}{4}+\frac {\left (2+2 x \right ) c_{3}}{4}+c_{1} x^{2}\]