2.1476 ODE No. 1476
\[ -36 n^2 y'(x) \wp (x;\text {g2},\text {g3})-2 (n+3) (4 n-3) n y(x) \phi '(x)+27 y^{(3)}(x)=0 \]
✗ Mathematica : cpu = 0.0958939 (sec), leaf count = 0
DSolve[-2*n*(3 + n)*(-3 + 4*n)*y[x]*Derivative[1][phi][x] - 36*n^2*WeierstrassP[x, {g2, g3}]*Derivative[1][y][x] + 27*Derivative[3][y][x] == 0,y[x],x]
, could not solve
DSolve[-2*n*(3 + n)*(-3 + 4*n)*y[x]*Derivative[1][phi][x] - 36*n^2*WeierstrassP[x, {g2, g3}]*Derivative[1][y][x] + 27*Derivative[3][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(27*diff(diff(diff(y(x),x),x),x)-36*n^2*WeierstrassP(x,g2,g3)*diff(y(x),x)-2*n*(n+3)*(4*n-3)*WeierstrassPPrime(x,g2,g3)*y(x)=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \operatorname {DESol}\left (\left \{27 \frac {d^{3}}{d x^{3}}\textit {\_Y} \left (x \right )-36 n^{2} \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right ) \left (\frac {d}{d x}\textit {\_Y} \left (x \right )\right )+\left (-8 \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) n^{3}-18 \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right ) n^{2}+18 n \operatorname {WeierstrassPPrime}\left (x , \operatorname {g2} , \operatorname {g3}\right )\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\]