2.1467 ODE No. 1467
\[ \text {a0} y(x)+\text {a1} y'(x)+\text {a2} y''(x)+y^{(3)}(x)=0 \]
✓ Mathematica : cpu = 0.0069313 (sec), leaf count = 84
DSolve[a0*y[x] + a1*Derivative[1][y][x] + a2*Derivative[2][y][x] + Derivative[3][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to c_1 e^{x \text {Root}\left [\text {$\#$1}^3+\text {$\#$1}^2 \text {a2}+\text {$\#$1} \text {a1}+\text {a0}\& ,1\right ]}+c_2 e^{x \text {Root}\left [\text {$\#$1}^3+\text {$\#$1}^2 \text {a2}+\text {$\#$1} \text {a1}+\text {a0}\& ,2\right ]}+c_3 e^{x \text {Root}\left [\text {$\#$1}^3+\text {$\#$1}^2 \text {a2}+\text {$\#$1} \text {a1}+\text {a0}\& ,3\right ]}\right \}\right \}\]
✓ Maple : cpu = 0.029 (sec), leaf count = 590
dsolve(diff(diff(diff(y(x),x),x),x)+a2*diff(diff(y(x),x),x)+a1*diff(y(x),x)+a0*y(x)=0,y(x))
\[y \left (x \right ) = c_{1} {\mathrm e}^{-\frac {\left (\left (\frac {i \sqrt {3}}{12}+\frac {1}{12}\right ) \left (36 \operatorname {a1} \operatorname {a2} -108 \operatorname {a0} -8 \operatorname {a2}^{3}+12 \sqrt {12 \operatorname {a0} \,\operatorname {a2}^{3}-3 \operatorname {a1}^{2} \operatorname {a2}^{2}-54 \operatorname {a1} \operatorname {a2} \operatorname {a0} +12 \operatorname {a1}^{3}+81 \operatorname {a0}^{2}}\right )^{{2}/{3}}+\frac {\operatorname {a2} \left (36 \operatorname {a1} \operatorname {a2} -108 \operatorname {a0} -8 \operatorname {a2}^{3}+12 \sqrt {12 \operatorname {a0} \,\operatorname {a2}^{3}-3 \operatorname {a1}^{2} \operatorname {a2}^{2}-54 \operatorname {a1} \operatorname {a2} \operatorname {a0} +12 \operatorname {a1}^{3}+81 \operatorname {a0}^{2}}\right )^{{1}/{3}}}{3}+\left (\operatorname {a1} -\frac {\operatorname {a2}^{2}}{3}\right ) \left (i \sqrt {3}-1\right )\right ) x}{\left (36 \operatorname {a1} \operatorname {a2} -108 \operatorname {a0} -8 \operatorname {a2}^{3}+12 \sqrt {12 \operatorname {a0} \,\operatorname {a2}^{3}-3 \operatorname {a1}^{2} \operatorname {a2}^{2}-54 \operatorname {a1} \operatorname {a2} \operatorname {a0} +12 \operatorname {a1}^{3}+81 \operatorname {a0}^{2}}\right )^{{1}/{3}}}}+c_{2} {\mathrm e}^{\frac {\left (i \left (36 \operatorname {a1} \operatorname {a2} -108 \operatorname {a0} -8 \operatorname {a2}^{3}+12 \sqrt {12 \operatorname {a0} \,\operatorname {a2}^{3}-3 \operatorname {a1}^{2} \operatorname {a2}^{2}-54 \operatorname {a1} \operatorname {a2} \operatorname {a0} +12 \operatorname {a1}^{3}+81 \operatorname {a0}^{2}}\right )^{{2}/{3}} \sqrt {3}-4 i \sqrt {3}\, \operatorname {a2}^{2}+12 i \sqrt {3}\, \operatorname {a1} -\left (36 \operatorname {a1} \operatorname {a2} -108 \operatorname {a0} -8 \operatorname {a2}^{3}+12 \sqrt {12 \operatorname {a0} \,\operatorname {a2}^{3}-3 \operatorname {a1}^{2} \operatorname {a2}^{2}-54 \operatorname {a1} \operatorname {a2} \operatorname {a0} +12 \operatorname {a1}^{3}+81 \operatorname {a0}^{2}}\right )^{{2}/{3}}-4 \operatorname {a2} \left (36 \operatorname {a1} \operatorname {a2} -108 \operatorname {a0} -8 \operatorname {a2}^{3}+12 \sqrt {12 \operatorname {a0} \,\operatorname {a2}^{3}-3 \operatorname {a1}^{2} \operatorname {a2}^{2}-54 \operatorname {a1} \operatorname {a2} \operatorname {a0} +12 \operatorname {a1}^{3}+81 \operatorname {a0}^{2}}\right )^{{1}/{3}}-4 \operatorname {a2}^{2}+12 \operatorname {a1} \right ) x}{12 \left (36 \operatorname {a1} \operatorname {a2} -108 \operatorname {a0} -8 \operatorname {a2}^{3}+12 \sqrt {12 \operatorname {a0} \,\operatorname {a2}^{3}-3 \operatorname {a1}^{2} \operatorname {a2}^{2}-54 \operatorname {a1} \operatorname {a2} \operatorname {a0} +12 \operatorname {a1}^{3}+81 \operatorname {a0}^{2}}\right )^{{1}/{3}}}}+c_{3} {\mathrm e}^{\frac {\left (\left (36 \operatorname {a1} \operatorname {a2} -108 \operatorname {a0} -8 \operatorname {a2}^{3}+12 \sqrt {12 \operatorname {a0} \,\operatorname {a2}^{3}-3 \operatorname {a1}^{2} \operatorname {a2}^{2}-54 \operatorname {a1} \operatorname {a2} \operatorname {a0} +12 \operatorname {a1}^{3}+81 \operatorname {a0}^{2}}\right )^{{2}/{3}}-2 \operatorname {a2} \left (36 \operatorname {a1} \operatorname {a2} -108 \operatorname {a0} -8 \operatorname {a2}^{3}+12 \sqrt {12 \operatorname {a0} \,\operatorname {a2}^{3}-3 \operatorname {a1}^{2} \operatorname {a2}^{2}-54 \operatorname {a1} \operatorname {a2} \operatorname {a0} +12 \operatorname {a1}^{3}+81 \operatorname {a0}^{2}}\right )^{{1}/{3}}+4 \operatorname {a2}^{2}-12 \operatorname {a1} \right ) x}{6 \left (36 \operatorname {a1} \operatorname {a2} -108 \operatorname {a0} -8 \operatorname {a2}^{3}+12 \sqrt {12 \operatorname {a0} \,\operatorname {a2}^{3}-3 \operatorname {a1}^{2} \operatorname {a2}^{2}-54 \operatorname {a1} \operatorname {a2} \operatorname {a0} +12 \operatorname {a1}^{3}+81 \operatorname {a0}^{2}}\right )^{{1}/{3}}}}\]