2.1461 ODE No. 1461
\[ -y'(x) \left (a+3 k^2 \text {sn}(z|x)^2\right )+y(x) \left (b+c \text {sn}(z|x)^2-3 k^2 \text {cn}(z|x) \text {dn}(z|x) \text {sn}(z|x)\right )+y^{(3)}(x)=0 \]
✗ Mathematica : cpu = 0.0325914 (sec), leaf count = 0
DSolve[(b - 3*k^2*JacobiCN[z, x]*JacobiDN[z, x]*JacobiSN[z, x] + c*JacobiSN[z, x]^2)*y[x] - (a + 3*k^2*JacobiSN[z, x]^2)*Derivative[1][y][x] + Derivative[3][y][x] == 0,y[x],x]
, could not solve
DSolve[(b - 3*k^2*JacobiCN[z, x]*JacobiDN[z, x]*JacobiSN[z, x] + c*JacobiSN[z, x]^2)*y[x] - (a + 3*k^2*JacobiSN[z, x]^2)*Derivative[1][y][x] + Derivative[3][y][x] == 0, y[x], x]
✗ Maple : cpu = 0. (sec), leaf count = 0
dsolve(diff(diff(diff(y(x),x),x),x)-(3*k^2*JacobiSN(z,x)^2+a)*diff(y(x),x)+(b+c*JacobiSN(z,x)^2-3*k^2*JacobiSN(z,x)*JacobiCN(z,x)*JacobiDN(z,x))*y(x)=0,y(x))
, result contains DESol or ODESolStruc
\[y \left (x \right ) = \operatorname {DESol}\left (\left \{\frac {d^{3}}{d x^{3}}\textit {\_Y} \left (x \right )+\left (-3 k^{2} \operatorname {JacobiSN}\left (z , x\right )^{2}-a \right ) \left (\frac {d}{d x}\textit {\_Y} \left (x \right )\right )+\left (b +c \operatorname {JacobiSN}\left (z , x\right )^{2}-3 k^{2} \operatorname {JacobiSN}\left (z , x\right ) \operatorname {JacobiCN}\left (z , x\right ) \operatorname {JacobiDN}\left (z , x\right )\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\]