2.146 ODE No. 146
\[ a y(x)^2+x^2 y'(x)+x y(x)^3=0 \]
✓ Mathematica : cpu = 0.629251 (sec), leaf count = 78
DSolve[a*y[x]^2 + x*y[x]^3 + x^2*Derivative[1][y][x] == 0,y[x],x]
\[\text {Solve}\left [-\frac {i a}{x}=\frac {2 e^{\frac {1}{2} \left (-\frac {i a}{x}-\frac {i}{y(x)}\right )^2}}{\sqrt {2 \pi } \text {erfi}\left (\frac {-\frac {i a}{x}-\frac {i}{y(x)}}{\sqrt {2}}\right )+2 c_1},y(x)\right ]\]
✓ Maple : cpu = 0.27 (sec), leaf count = 84
dsolve(x^2*diff(y(x),x)+x*y(x)^3+a*y(x)^2 = 0,y(x))
\[\frac {\left (a \sqrt {\pi }\, \sqrt {2}\, \operatorname {erf}\left (\frac {\sqrt {2}\, \left (a y \left (x \right )+x \right )}{2 y \left (x \right ) x}\right ) {\mathrm e}^{\frac {\left (a y \left (x \right )+x \right )^{2}}{2 y \left (x \right )^{2} x^{2}}}+2 x \right ) {\mathrm e}^{-\frac {\left (\left (a -x \right ) y \left (x \right )+x \right ) \left (\left (x +a \right ) y \left (x \right )+x \right )}{2 y \left (x \right )^{2} x^{2}}}}{2}+c_{1} = 0\]