2.1419   ODE No. 1419

\[ y''(x)=-\frac {\sec (x) y'(x) \left (x^2 \sin (x)-2 x \cos (x)\right )}{x^2}-\frac {y(x) \sec (x) (2 x \cos (x)-x \sin (x))}{x^2} \]

Mathematica : cpu = 0.805614 (sec), leaf count = 0

DSolve[Derivative[2][y][x] == -((Sec[x]*(2*x*Cos[x] - x*Sin[x])*y[x])/x^2) - (Sec[x]*(-2*x*Cos[x] + x^2*Sin[x])*Derivative[1][y][x])/x^2,y[x],x]
 

, could not solve

DSolve[Derivative[2][y][x] == -((Sec[x]*(2*x*Cos[x] - x*Sin[x])*y[x])/x^2) - (Sec[x]*(-2*x*Cos[x] + x^2*Sin[x])*Derivative[1][y][x])/x^2, y[x], x]

Maple : cpu = 0.343 (sec), leaf count = 12

dsolve(diff(diff(y(x),x),x) = -(x^2*sin(x)-2*cos(x)*x)/x^2/cos(x)*diff(y(x),x)-(2*cos(x)-x*sin(x))/x^2/cos(x)*y(x),y(x))
 
\[y \left (x \right ) = x \left (\sin \left (x \right ) c_{2} +c_{1} \right )\]