2.14 ODE No. 14
\[ a x^m+y'(x)+y(x)^2=0 \]
✓ Mathematica : cpu = 0.153857 (sec), leaf count = 602
DSolve[a*x^m + y[x]^2 + Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to -\frac {\frac {1}{2} (m+2)^{-\frac {1}{m+2}} a^{\frac {1}{2 (m+2)}+\frac {1}{2}} x^{\frac {m+2}{2}-\frac {\frac {m}{2}+1}{m+2}} \Gamma \left (1+\frac {1}{m+2}\right ) \left (J_{\frac {1}{m+2}-1}\left (\frac {2 \sqrt {a} x^{\frac {m+2}{2}}}{m+2}\right )-J_{1+\frac {1}{m+2}}\left (\frac {2 \sqrt {a} x^{\frac {m+2}{2}}}{m+2}\right )\right )+\left (1-\frac {\frac {m}{2}+1}{m+2}\right ) (m+2)^{-\frac {1}{m+2}} a^{\frac {1}{2 (m+2)}} x^{-\frac {\frac {m}{2}+1}{m+2}} \Gamma \left (1+\frac {1}{m+2}\right ) J_{\frac {1}{m+2}}\left (\frac {2 \sqrt {a} x^{\frac {m+2}{2}}}{m+2}\right )+c_1 \left (\frac {1}{2} (m+2)^{-\frac {1}{m+2}} a^{\frac {1}{2 (m+2)}+\frac {1}{2}} x^{\frac {\frac {m}{2}+1}{m+2}+\frac {m+2}{2}-1} \Gamma \left (1-\frac {1}{m+2}\right ) \left (J_{-1-\frac {1}{m+2}}\left (\frac {2 \sqrt {a} x^{\frac {m+2}{2}}}{m+2}\right )-J_{1-\frac {1}{m+2}}\left (\frac {2 \sqrt {a} x^{\frac {m+2}{2}}}{m+2}\right )\right )+\left (\frac {m}{2}+1\right ) (m+2)^{-\frac {1}{m+2}-1} a^{\frac {1}{2 (m+2)}} x^{\frac {\frac {m}{2}+1}{m+2}-1} \Gamma \left (1-\frac {1}{m+2}\right ) J_{-\frac {1}{m+2}}\left (\frac {2 \sqrt {a} x^{\frac {m+2}{2}}}{m+2}\right )\right )}{-(m+2)^{-\frac {1}{m+2}} a^{\frac {1}{2 (m+2)}} x^{1-\frac {\frac {m}{2}+1}{m+2}} \Gamma \left (1+\frac {1}{m+2}\right ) J_{\frac {1}{m+2}}\left (\frac {2 \sqrt {a} x^{\frac {m+2}{2}}}{m+2}\right )+c_1 (m+2)^{-\frac {1}{m+2}} \left (-a^{\frac {1}{2 (m+2)}}\right ) x^{\frac {\frac {m}{2}+1}{m+2}} \Gamma \left (1-\frac {1}{m+2}\right ) J_{-\frac {1}{m+2}}\left (\frac {2 \sqrt {a} x^{\frac {m+2}{2}}}{m+2}\right )}\right \}\right \}\]
✓ Maple : cpu = 0.07 (sec), leaf count = 187
dsolve(diff(y(x),x)+y(x)^2+a*x^m = 0,y(x))
\[y \left (x \right ) = \frac {-\operatorname {BesselJ}\left (\frac {3+m}{m +2}, \frac {2 \sqrt {a}\, x^{\frac {m}{2}+1}}{m +2}\right ) \sqrt {a}\, x^{\frac {m}{2}+1} c_{1} -\operatorname {BesselY}\left (\frac {3+m}{m +2}, \frac {2 \sqrt {a}\, x^{\frac {m}{2}+1}}{m +2}\right ) \sqrt {a}\, x^{\frac {m}{2}+1}+c_{1} \operatorname {BesselJ}\left (\frac {1}{m +2}, \frac {2 \sqrt {a}\, x^{\frac {m}{2}+1}}{m +2}\right )+\operatorname {BesselY}\left (\frac {1}{m +2}, \frac {2 \sqrt {a}\, x^{\frac {m}{2}+1}}{m +2}\right )}{x \left (c_{1} \operatorname {BesselJ}\left (\frac {1}{m +2}, \frac {2 \sqrt {a}\, x^{\frac {m}{2}+1}}{m +2}\right )+\operatorname {BesselY}\left (\frac {1}{m +2}, \frac {2 \sqrt {a}\, x^{\frac {m}{2}+1}}{m +2}\right )\right )}\]
Hand solution
\begin{align} y^{\prime }\left ( x\right ) +y^{2}\left ( x\right ) +ax^{m} & =0\nonumber \\ y^{\prime }\left ( x\right ) & =-ax^{m}-y^{2}\left ( x\right ) \tag {1}\end{align}
This is Riccati first order non-linear ODE of the form
\begin{equation} y^{\prime }\left ( x\right ) =P\left ( x\right ) +Q\left ( x\right ) y+R\left ( x\right ) y^{2}\left ( x\right ) \tag {2}\end{equation}
where in this case \(Q\left ( x\right ) =0,R\left ( x\right ) =-1,P\left ( x\right ) =-ax^{m}\). We can solve this
in two ways. If we know one particular solution \(y_{p}\left ( x\right ) \) for (1) then we use the substitution \(y=y_{p}+\frac {1}{u}\) and
convert (1) to new associated linear ODE of the form \(u^{\prime }+\left ( Q\left ( x\right ) +2R\left ( x\right ) \right ) y_{p}+R\left ( x\right ) =0\). If we do not know a particular
solution, then we use the standard substitution \(y=\frac {-u^{\prime }}{uR\left ( x\right ) }=\frac {u^{\prime }}{u}\) since \(R\left ( x\right ) =-1\) and this is what we will do
here.
Since \(u^{\prime }=yu\) then
\begin{align*} u^{\prime \prime } & =yu^{\prime }+y^{\prime }u\\ & =y\left ( yu\right ) +\left ( -ax^{m}-y^{2}\right ) u\\ & =y^{2}u-ax^{m}u-y^{2}u\\ & =-ax^{m}u \end{align*}
So we have new second order ODE
\begin{equation} u^{\prime \prime }+ax^{m}u=0 \tag {3}\end{equation}
which we solve for \(u\). This is Airy ODE but with a
positive sign. Of the form \(u^{\prime \prime }+q\left ( x\right ) u=0.\)
Recall that the solution to \(u^{\prime \prime }-axu=0\) is
\[ u=c_{1}Ai\left ( a^{\frac {1}{3}}x\right ) +c_{2}Bi\left ( a^{\frac {1}{3}}x\right ) \]
When \(x\) has power on it (there are restriction on what values the power can take), the
solution is written in terms of Bessel functions. The solution to \(u^{\prime \prime }-ax^{m}u=0\) is
\[ u=c_{1}\sqrt {x}BesselI\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) +c_{2}\sqrt {x}BesselK\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) \]
When the sign is positive, the solution to \(u^{\prime \prime }+ax^{m}u=0\) is
\begin{equation} u\left ( x\right ) =c_{1}\sqrt {x}BesselJ\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) +c_{2}\sqrt {x}BesselY\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) \tag {4}\end{equation}
We need to find \(u^{\prime }\left ( x\right ) \) now. From (4)
\[ \frac {d}{dx}\left [ c_{1}\sqrt {x}BesselJ\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) \right ] =c_{1}\frac {BesselJ\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) -\sqrt {a}x^{\frac {m+1}{2}}BesselJ\left ( \frac {m+3}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) }{\sqrt {x}}\]
And
\[ \frac {d}{dx}\left [ c_{2}\sqrt {x}BesselY\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) \right ] =c_{2}\frac {BesselY\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) -\sqrt {a}x^{\frac {m+1}{2}}BesselY\left ( \frac {m+3}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) }{\sqrt {x}}\]
Therefore
\begin{align*} u^{\prime }\left ( x\right ) =c_{1}\frac {BesselJ\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) -\sqrt {a}x^{\frac {m+1}{2}}BesselJ\left ( \frac {m+3}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) }{\sqrt {x}}\\ +c_{2}\frac {BesselY\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) -\sqrt {a}x^{\frac {m+1}{2}}BesselY\left ( \frac {m+3}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) }{\sqrt {x}}\end{align*}
Since \(u^{\prime }=yu\) then
\begin{align*} y & =\frac {u^{\prime }}{u}\\ & =\frac {c_{1}\frac {BesselJ\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) -\sqrt {a}x^{\frac {m+1}{2}}BesselJ\left ( \frac {m+3}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) }{\sqrt {x}}+c_{2}\frac {BesselY\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) -\sqrt {a}x^{\frac {m+1}{2}}BesselY\left ( \frac {m+3}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) }{\sqrt {x}}}{c_{1}\sqrt {x}BesselJ\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) +c_{2}\sqrt {x}BesselY\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) }\\ & =\frac {c_{1}\left [ BesselJ\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) -\sqrt {a}x^{\frac {m+1}{2}}BesselJ\left ( \frac {m+3}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) \right ] +c_{2}\left [ BesselY\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) -\sqrt {a}x^{\frac {m+1}{2}}BesselY\left ( \frac {m+3}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) \right ] }{\sqrt {x}\left [ c_{1}\sqrt {x}BesselJ\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) +c_{2}\sqrt {x}BesselY\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) \right ] }\\ & =\frac {c_{1}\left [ BesselJ\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) -\sqrt {a}x^{\frac {m+1}{2}}BesselJ\left ( \frac {m+3}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) \right ] +c_{2}\left [ BesselY\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) -\sqrt {a}x^{\frac {m+1}{2}}BesselY\left ( \frac {m+3}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) \right ] }{c_{1}xBesselJ\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) +c_{2}xBesselY\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) }\end{align*}
Let \(C_{1}=\frac {c_{1}}{c_{2}}\) then the above can be written as
\[ y=\frac {1}{x}\frac {C_{1}\left [ BesselJ\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) -\sqrt {a}x^{\frac {m+1}{2}}BesselJ\left ( \frac {m+3}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) \right ] +BesselY\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) -\sqrt {a}x^{\frac {m+1}{2}}BesselY\left ( \frac {m+3}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) }{C_{1}BesselJ\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) +BesselY\left ( \frac {1}{m+2},\frac {2\sqrt {a}x^{\frac {m+1}{2}}}{m+2}\right ) }\]