2.1399   ODE No. 1399

\[ y''(x)=\frac {(3 x+1) y'(x)}{(x-1) (x+1)}-\frac {36 (x+1)^2 y(x)}{(x-1)^2 (3 x+5)^2} \]

Mathematica : cpu = 1.04963 (sec), leaf count = 72

DSolve[Derivative[2][y][x] == (-36*(1 + x)^2*y[x])/((-1 + x)^2*(5 + 3*x)^2) + ((1 + 3*x)*Derivative[1][y][x])/((-1 + x)*(1 + x)),y[x],x]
 
\[\left \{\left \{y(x)\to c_1 e^{\frac {1}{2} (3 \log (1-x)+\log (3 x+5))}+\frac {1}{2} c_2 e^{\frac {1}{2} (3 \log (1-x)+\log (3 x+5))} (3 \log (1-x)+\log (3 x+5))\right \}\right \}\]

Maple : cpu = 0.06 (sec), leaf count = 34

dsolve(diff(diff(y(x),x),x) = 1/(x-1)*(3*x+1)/(1+x)*diff(y(x),x)-36*(1+x)^2/(x-1)^2/(3*x+5)^2*y(x),y(x))
 
\[y \left (x \right ) = \sqrt {3 x +5}\, \left (x -1\right )^{{3}/{2}} \left (c_{2} \ln \left (3 x +5\right )+3 c_{2} \ln \left (x -1\right )+c_{1} \right )\]