2.1388   ODE No. 1388

\[ y''(x)=-\frac {y(x) \left (v (v+1) (x-1)-a^2 x\right )}{4 (x-1)^2 x^2}-\frac {(3 x-1) y'(x)}{2 (x-1) x} \]

Mathematica : cpu = 0.275714 (sec), leaf count = 235

DSolve[Derivative[2][y][x] == -1/4*((v*(1 + v)*(-1 + x) - a^2*x)*y[x])/((-1 + x)^2*x^2) - ((-1 + 3*x)*Derivative[1][y][x])/(2*(-1 + x)*x),y[x],x]
 
\[\left \{\left \{y(x)\to c_2 (-1)^{\frac {1}{2} (-2 v-3)+1} x^{\frac {1}{4} (-2 v-3)+1} e^{\frac {1}{4} (-2 \log (1-x)-\log (x))} (x-1)^{\frac {1}{2} \left (\frac {1}{2} (a+v+1)+\frac {1}{2} (a+v+2)+\frac {1}{2} (-2 v-3)+1\right )} \, _2F_1\left (\frac {1}{2} (-2 v-3)+\frac {1}{2} (a+v+1)+1,\frac {1}{2} (-2 v-3)+\frac {1}{2} (a+v+2)+1;\frac {1}{2} (-2 v-3)+2;x\right )+c_1 x^{\frac {1}{4} (2 v+3)} e^{\frac {1}{4} (-2 \log (1-x)-\log (x))} (x-1)^{\frac {1}{2} \left (\frac {1}{2} (a+v+1)+\frac {1}{2} (a+v+2)+\frac {1}{2} (-2 v-3)+1\right )} \, _2F_1\left (\frac {1}{2} (a+v+1),\frac {1}{2} (a+v+2);\frac {1}{2} (2 v+3);x\right )\right \}\right \}\]

Maple : cpu = 0.116 (sec), leaf count = 76

dsolve(diff(diff(y(x),x),x) = -1/2/x*(3*x-1)/(x-1)*diff(y(x),x)-1/4*(v*(v+1)*(x-1)-a^2*x)/x^2/(x-1)^2*y(x),y(x))
 
\[y \left (x \right ) = \left (x -1\right )^{-\frac {a}{2}} \left (x^{-\frac {v}{2}} \operatorname {hypergeom}\left (\left [-\frac {v}{2}-\frac {a}{2}, \frac {1}{2}-\frac {v}{2}-\frac {a}{2}\right ], \left [\frac {1}{2}-v \right ], x\right ) c_{1} +x^{\frac {1}{2}+\frac {v}{2}} \operatorname {hypergeom}\left (\left [1+\frac {v}{2}-\frac {a}{2}, \frac {1}{2}+\frac {v}{2}-\frac {a}{2}\right ], \left [\frac {3}{2}+v \right ], x\right ) c_{2} \right )\]