2.1362   ODE No. 1362

\[ y''(x)=\frac {2 x y'(x)}{x^2-1}-\frac {y(x) \left (\left (x^2-1\right ) x^2 (a-n) (a+n+1)+2 a x^2+n (n+1) \left (x^2-1\right )\right )}{x^2 \left (x^2-1\right )} \]

Mathematica : cpu = 4.9196 (sec), leaf count = 0

DSolve[Derivative[2][y][x] == -(((2*a*x^2 + n*(1 + n)*(-1 + x^2) + (a - n)*(1 + a + n)*x^2*(-1 + x^2))*y[x])/(x^2*(-1 + x^2))) + (2*x*Derivative[1][y][x])/(-1 + x^2),y[x],x]
 

, DifferentialRoot result

\[\left \{\left \{y(x)\to (x)\right \}\right \}\]

Maple : cpu = 0.345 (sec), leaf count = 109

dsolve(x^2*(x^2-1)*diff(diff(y(x),x),x)-2*x^3*diff(y(x),x)-((a-n)*(a+n+1)*x^2*(x^2-1)+2*a*x^2+n*(n+1)*(x^2-1))*y(x),y(x))
 
\[y \left (x \right ) = c_{1} x^{-n} \operatorname {HeunC}\left (0, -\frac {1}{2}-n , -2, -\frac {1}{4} a^{2}+\frac {1}{4} n^{2}-\frac {1}{4} a +\frac {1}{4} n , -\frac {1}{4} n^{2}-\frac {1}{4} n +\frac {3}{4}+\frac {1}{4} a^{2}-\frac {1}{4} a , x^{2}\right )+c_{2} x^{n +1} \operatorname {HeunC}\left (0, \frac {1}{2}+n , -2, -\frac {1}{4} a^{2}+\frac {1}{4} n^{2}-\frac {1}{4} a +\frac {1}{4} n , -\frac {1}{4} n^{2}-\frac {1}{4} n +\frac {3}{4}+\frac {1}{4} a^{2}-\frac {1}{4} a , x^{2}\right )\]