2.1360 ODE No. 1360
\[ y''(x)=\frac {v (v+1) y(x)}{x^2}-\frac {2 x y'(x)}{x^2-1} \]
✓ Mathematica : cpu = 0.0514002 (sec), leaf count = 68
DSolve[Derivative[2][y][x] == (v*(1 + v)*y[x])/x^2 - (2*x*Derivative[1][y][x])/(-1 + x^2),y[x],x]
\[\left \{\left \{y(x)\to c_1 i^{-v} x^{-v} \, _2F_1\left (\frac {1}{2},-v;\frac {1}{2}-v;x^2\right )+c_2 i^{v+1} x^{v+1} \, _2F_1\left (\frac {1}{2},v+1;v+\frac {3}{2};x^2\right )\right \}\right \}\]
✓ Maple : cpu = 0.128 (sec), leaf count = 47
dsolve(diff(diff(y(x),x),x) = -2*x/(x^2-1)*diff(y(x),x)+v*(v+1)/x^2*y(x),y(x))
\[y \left (x \right ) = c_{1} x^{-v} \operatorname {hypergeom}\left (\left [\frac {1}{2}, -v \right ], \left [\frac {1}{2}-v \right ], x^{2}\right )+c_{2} x^{v +1} \operatorname {hypergeom}\left (\left [\frac {1}{2}, v +1\right ], \left [\frac {3}{2}+v \right ], x^{2}\right )\]