2.1356   ODE No. 1356

\[ y''(x)=-\frac {y(x) \left (-n^2-v (v+1) x^2\right )}{x^2 \left (x^2+1\right )}-\frac {\left (2 x^2+1\right ) y'(x)}{x \left (x^2+1\right )} \]

Mathematica : cpu = 0.174662 (sec), leaf count = 90

DSolve[Derivative[2][y][x] == -(((-n^2 - v*(1 + v)*x^2)*y[x])/(x^2*(1 + x^2))) - ((1 + 2*x^2)*Derivative[1][y][x])/(x*(1 + x^2)),y[x],x]
 
\[\left \{\left \{y(x)\to c_1 x^{-n} \, _2F_1\left (-\frac {n}{2}-\frac {v}{2},-\frac {n}{2}+\frac {v}{2}+\frac {1}{2};1-n;-x^2\right )+c_2 x^n \, _2F_1\left (\frac {n}{2}-\frac {v}{2},\frac {n}{2}+\frac {v}{2}+\frac {1}{2};n+1;-x^2\right )\right \}\right \}\]

Maple : cpu = 0.122 (sec), leaf count = 29

dsolve(diff(diff(y(x),x),x) = -(2*x^2+1)/x/(x^2+1)*diff(y(x),x)-(-v*(v+1)*x^2-n^2)/x^2/(x^2+1)*y(x),y(x))
 
\[y \left (x \right ) = c_{1} \operatorname {LegendreP}\left (v , n , \sqrt {x^{2}+1}\right )+\operatorname {LegendreQ}\left (v , n , \sqrt {x^{2}+1}\right ) c_{2}\]